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—— Abstract

Data science is concerned with the extraction of knowledge and insight, and ultimately societal
or economic value, from data. It complements traditional statistics in that its object is data as
it presents itself in the wild (often complex and heterogeneous, noisy, loosely structured, biased,
etc.), rather than well-structured data sampled in carefully designed studies. It also has a strong
computer science focus, and is related to popular areas such as big data, machine learning, data
mining and knowledge discovery.

Data science is becoming increasingly important with the abundance of big data, while the
number of skilled data scientists is lagging. This has raised the question as to whether it is possible
to automate data science in several contexts. First, from an artificial intelligence perspective, it is
interesting to investigate whether (data) science (or portions of it) can be automated, as it is an
activity currently requiring high levels of human expertise. Second, the field of machine learning
has a long-standing interest in applying machine learning at the meta-level, in order to obtain
better machine learning algorithms, yielding recent successes in automated parameter tuning,
algorithm configuration and algorithm selection. Third, there is an interest in automating not
only the model building process itself (cf. the Automated Statistician) but also in automating
the preprocessing steps (data wrangling).

This Dagstuhl seminar brought together researchers from all areas concerned with data science
in order to study whether, to what extent, and how data science can be automated.
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1 Executive Summary
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Holger H. Hoos (Leiden University, NL)

Padhraic Smyth (University of California — Irvine, US)
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Introduction

Data science is concerned with the extraction of knowledge and insight, and ultimately
societal or economic value, from data. It complements traditional statistics in that its object
is data as it presents itself in the wild (often complex and heterogeneous, noisy, loosely
structured, biased, etc.), rather than data well-structured data sampled in carefully designed
studies.

Such ‘Big Data’ is increasingly abundant, while the number of skilled data scientists is
lagging. This has raised the question as to whether it is possible to automate data science in
several contexts. First, from an artificial intelligence perspective, it is related to the issue
of “robot scientists”, which are concerned with the automation of scientific processes and
which have so far largely focused on the life sciences. It is interesting to investigate whether
principles of robot scientists can be applied to data science.

Second, there exist many results in the machine learning community, which has since the
early 1980s been applying machine learning at a meta-level, in order to learn which machine
learning algorithms, variants and (hyper-)parameter settings should be used on which types
of data sets.

In recent years, there have been breakthroughs in this domain, and there now exist
effective systems (such as Auto-WEKA and auto-sklearn) that automatically select machine
learning methods and configure their hyperparameters in order to maximize the predictive
performance on particular datasets.

Third, there are projects such as the Automated Statistician that want to fully automate
the process of statistical modeling. Such systems could dramatically simplify scientific
data modeling tasks, empowering scientists from data-rich scientific disciplines such as
bioinformatics, climate data analysis, computational social science, and so on. To ensure
success, important challenges not only from a purely modelling perspective, but also in terms
of interpretability and the human-computer interface, need to be tackled. For example, the
input to the Automated Statistician is a dataset, and the system produces not only a complex
statistical model by means of a search process, but also explains it in natural language.

Fourth, there is an interest in not only automating the model building step in data
science, but also various steps that precede it. It is well known in data science that 80% of
the effort goes into preprocessing the data, putting it in the right format, and selecting the
right features, whereas the model-building step typically only takes 20% of the effort. This
has motivated researchers to focus on automated techniques for data wrangling, which is
precisely concerned with transforming the given dataset into a format that can be handled by
the data analysis component. Here, there are strong connections with inductive programming
techniques.

Fifth, as it is often easier for non-expert users to interpret and understand visualisations
of data rather than statistical models, work on automatic visualisation of data sets is also
very relevant to this Dagstuhl seminar.
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Finally, an interesting and challenging research question is whether it is possible to
develop an integrated solution that tackles all these issues (as is the topic of the ERC AdG
SYNTH).

Overview of the seminar
Structure of the seminar

The seminar was structured as follows. The mornings were generally dedicated to present-
ations (short tutorials on day one), whereas the afternoons were generally dedicated to
discussions such as plenary discussions, smaller-group breakout sessions, and flex time that
was kept open prior to the seminar. The flex time ended up being dedicated to a mix of
presentations and breakout sessions.

Challenges in automating data science

On day one, a range of challenges for research on automating data science were identified,

which can be clustered around the following six themes:

1. Automating Machine Learning (AutoML)
Main challenges: computational efficiency; ensuring generalization also for small data;
make AutoML faster and more data-efficient using meta-learning; extending ideas from
AutoML to exploratory analysis / unsupervised learning.

2. Exploratory data analysis and visualization
Main challenges: the fact that there is there is no single or clearly defined objective;
help the user make progress towards an ill-defined goal; (subjective) interestingness of
an analysis, a pattern, or a visualization; integrate machine learning and interaction in
exploration; exploration of data types beyond simply tabular; veracity of visualizations;
how to quantify progress and measure success; the need for benchmarks.

3. Data wrangling
Main challenges: extend the scope of AutoML to include data wrangling tasks; user
interfaces to provide intuitive input in data wrangling tasks; how to quantify progress
and measure success; the need for benchmarks.

4. Automation and human-centric data science (explainability, privacy, fairness,
trust, interaction)
Main challenges: build-in privacy and fairness constraints in automatic data science
systems; the dangers of ignorant usage of automated data science systems; different levels
of expertise benefit from different degrees of automation; optimizing the performance
of the combined human/machine ‘team’; determine when and where the human must
be involved; definition or criteria for explainability; risk that automation will reduce
explainability and transparency; explainability to whom — a data scientist or layperson?

5. Facilitating data science by novel querying and programming paradigms
Main challenges: interactive data models to help users gain intuitive understanding;
declarative approaches for data analysis, querying, and visualization; a query language
for automated data science.

6. Evaluation
Main challenges: robust objective measures for data science processes beyond predictive
modelling; subjective measures: measures that depend on the user background and goals;
evaluation of the entire data science pipeline versus individual steps; reproducibility in
the presence of user interactions.
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Topics discussed in depth

These identified challenges were then used to determine the program of the rest of the seminar.
Talks were held on partial solutions to a range of these challenges. In addition, breakout
discussions were held on the following topics:

The relation between data-driven techniques and knowledge-based reasoning.

Data wrangling.

Beyond the black-box: explainability.

Automation of exploratory / unsupervised data science tasks, and visualization.

ARSI

Automating data science for human users.

Along with abstracts of the talks, detailed discussions of the main ideas and conclusions
of each of these breakout sessions are included in this Dagstuhl report.

Discussion and outlook

Automating data science is an area of research that is understudied as such. AutoML, as a
subarea of automating data science, is arguably the first subarea where some remarkable
successes have been achieved. This seminar identified the main challenges for the field
in translating these successes into advances in other subareas of automating data science,
most notably in automating exploratory data analysis, data wrangling and related tasks,
integrating data and knowledge-driven approaches, and ultimately the data science process
as a whole, from data gathering to the creation of insights and value.

Further developing automated data science raises several challenges. A first challenge
concerns the evaluation of automated data science methods. Indeed, the possibility to
automate is preconditioned on the availability of criteria to optimize. A second key one
is how to ensure that automated data science systems remain Human-Centric, viewing
humans as useful allies and ultimate beneficiaries. This can be achieved by designing effective
user-interaction techniques, by ensuring explainability, and by ensuring privacy is respected
and individuals are treated fairly. These are basic requirements for ensuring justified trust in
automated data science systems, and thus key drivers to success.

18401
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3 Overview of Talks

3.1 Automated Machine Learning from Spatio-temporal Data
Mitra Baratchi (Leiden University, NL)

License ) Creative Commons BY 3.0 Unported license
© Mitra Baratchi
Main reference Mitra Baratchi, Geert Heijenk, Maarten van Steen: “Spaceprint: a Mobility-based Fingerprinting
Scheme for Public Spaces”, CoRR, Vol. abs/1703.09962, 2017.
URL https://arxiv.org/abs/1703.09962

Spatio-temporal mobility datasets are generated abundantly as a result of prevalent use of
location-aware technologies. Incorporating unprecedented information about moving entities
such as people, animals, and vehicles, automating the process of learning from such data
opens the door towards many applications in ecology, transportation, and urban planning.
However, due to having a non-propositional representation, automated machine learning from
raw mobility data is still an open challenge. Current machine-learning-based approaches using
such data still rely on an extensive manual pre-processing phase. In this talk, I presented
two examples of automated pre-processing tasks based on mobility data in the context of
space classification and map segmentation. Both these examples can achieve automation
through defining an unsupervised learning problem on the original representation of data.

3.2 Towards Automated Clustering
Hendrik Blockeel (KU Leuven, BE)

License ) Creative Commons BY 3.0 Unported license
© Hendrik Blockeel
Joint work of Hendrik Blockeel, Toon Van Craenendonck, Wannes Meert, Sebastijan Dumancic, Elia Van
Wolputte
URL https://dtai.cs.kuleuven.be/software/cobras/

This talk provides an overview of the PhD research of Toon Van Craenendonck on semi-
automated, interactive clustering. The main conclusions of this research are as follows. The
choice of the clustering algorithm strongly affects the results of clustering. Choosing the
most suitable algorithm cannot be done with internal quality measures, but it can be done
using a small number of must-link and cannot-link constraints. A novel algorithm called
COBRAS is proposed that makes use of an intermediate layer between clusters and instances,
called super-instances, and that automatically determines the appropriate granularity of
the super-instances. COBRAS is the first clustering algorithm that is truly interactive in
the sense that it combines three desirable properties: it is anytime, query-efficient, and
time-efficient.

References

1 T Van Craenendonck, H Blockeel (2015). Using internal validity measures to compare
clustering algorithms. Benelearn 2015 Poster presentations (online), 1-8

2 T Van Craenendonck, H Blockeel (2017). Constraint-based clustering selection. Machine
Learning 106(9-10): 1497-1521.

3 T Van Craenendonck, S Dumancic, H Blockeel (2017). COBRA: A Fast and Simple Method
for Active Clustering with Pairwise Constraints. IJCAI 2017: 2871-2877
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4 T Van Craenendonck, S Dumancié¢, E Van Wolputte, H Blockeel (2018). COBRAS: Fast,
Iterative, Active Clustering with Pairwise Constraints. In Proc. of 17th International Sym-
posium on Intelligent Data Analysis, 2018. Springer, to appear. Preprint arXiv:1803.11060

5 T Van Craenendonck, W Meert, S Dumancic, H Blockeel (2018). COBRAS-TS: A new
approach to Semi-Supervised Clustering of Time Series. In Proc. of 20th International
Conference on Discovery Science. Springer, to appear. Preprint arXiv:1805.00779

3.3 AutoDiscovery : Intelligent Automated Exploratory Data Analysis
for Biomedical Research

Ray G. Butler (Butler Scientifics — Barcelona, ES)

License ) Creative Commons BY 3.0 Unported license
© Ray G. Butler
Joint work of Ray G. Butler, Joan Guardia-Olmos, Javier Hernandez-Losa

According to NIH and SciMago Journal & Country Rank estimations, there are more than
400,000 principal investigators worldwide actively running biomedical research projects in the
form of clinical studies, collaborations with pharma companies and basic biological research,
among others.

The datasets being produced through these projects are distinguished primarily by their
complexity in terms of multidimensionality and sample stratification. John W. Tukey’s
exploratory data analysis (EDA) techniques are rising in response to this particular scenario.
However, both open-source and commercial EDA software packages typically require a broad
range of data science skills and knowledge including data integration and visualization,
software programming and statistical methodologies which makes it difficult for principal
investigators to become actively involved in the exploratory phase.

AutoDiscovery is an intelligent automated exploratory data analysis software that helps
biomedical principal investigators integrating and exploring their complex datasets to unveil
associations with high statistical significance and clinical relevance hidden in the data files of
scientific experiments and clinical trials.

3.4 Elements of an Automated Data Scientist
Luc De Raedt (KU Leuven, BE)

License ) Creative Commons BY 3.0 Unported license
© Luc De Raedt
Joint work of Luc De Raedt, Hendrik Blockeel, Samuel Kolb, Stefano Teso, Gust Verbruggen
Main reference Luc De Raedt, Hendrik Blockeel, Samuel Kolb, Stefano Teso, Gust Verbruggen: “Elements of an
Automatic Data Scientist”, in Proc. of the Advances in Intelligent Data Analysis XVII — 17th
International Symposium, IDA 2018, ’s-Hertogenbosch, The Netherlands, October 24-26, 2018,
Proceedings, Lecture Notes in Computer Science, Vol. 11191, pp. 3-14, Springer, 2018.
URL https://doi.org/10.1007/978-3-030-01768-2_ 1

We provide a simple but non-trivial setting for automating data science. Given are a set
of worksheets in a spreadsheet and the goal is to automatically complete some values. We
also outline elements of the SYNTH framework that tackles this task: SYNTH-A-SIZER, an
automated data wrangling system for automatically transforming the problem into attribute-
value format; TACLE, an inductive constraint learning system for inducing formula’s in
spreadsheets; MERCS, a versatile predictive learning system; as well as the autocompletion
component that integrates these systems.
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3.5 Towards a Measurement Theory for Data Science
Peter Flach (University of Bristol, GB)

License ) Creative Commons BY 3.0 Unported license
© Peter Flach

Performance evaluation is of clear importance in machine learning and data science, and
arguably even more so for automated data science. Our understanding of performance
evaluation measures for machine-learned classifiers has improved considerably over the last
twenty years. In this short talk I highlighted a range of areas where understanding is
still lagging behind our algorithmic advances, sometimes leading to ill-advised practices in
classifier evaluation. I argued that in order to make further progress we need to develop a
proper measurement theory for data science. I gave some examples what such a measurement
theory might look like and what kinds of new results it would entail. In future work I will
explore the idea that key properties such as classification ability and data set difficulty are
unlikely to be directly observable, taking inspiration from the kind of latent-variable models
developed in psychometrics. I will also explore the value of causal explanations of observed
performance of machine learning models and algorithms.

3.6 MagicWrangler Demo: Tool and Data
Jose Hernandez-Orallo (Technical University of Valencia, ES)

License @ Creative Commons BY 3.0 Unported license
© Jose Hernandez-Orallo,
Joint work of Jose Hernandez-Orallo, Lidia Contreras-Ochando, Cesar Ferri, Susumu Katayama, Fernando
Martinez-Plumed, M. José Ramirez-Quintana
URL http://dmip.webs.upv.es/datawrangling/

MagicWrangler is a data wrangling tool that makes domain identification and extracts
patterns using MagicHaskeller. We made a presentation of how the domain is identified and
used to reduce the search space for MagicHaskeller. We presented a new data repository
including 123 data wrangling datasets.

References

1 Contreras-Ochando, L.; Martinez-Plumed, F.; Ferri, C.; Herndndez-Orallo, J.; and Ramirez-
Quintana, M. J. “General-purpose inductive programming for data wrangling automation”,
Al4DataSci @ NIPS, 2016.

2 Contreras-Ochando, L.; Ferri, C.; Hernandez-Orallo, J.; Martinez-Plumed, F.; Ramirez-
Quintana, M. J.; and Katayama, S. “Domain specific induction for data wrangling automa-
tion (system demonstration)”, AutoML @ ICML 2017.

3 Contreras-Ochando, L. “Domain specific induction for data wrangling automation”, in
Approaches and Applications of Inductive Programming (Dagstuhl Seminar 17382), Schmid,
U. ; Muggleton, S.H. ; Singh, R. (eds.) Dagstuhl Reports, Volume 7, Issue 9. 2018, DOLI:
10.4230/DagRep.7.9.86

4 Contreras-Ochando, L.; Ferri, C.; Hernandez-Orallo, J.; Martinez-Plumed, F.; Ramirez-
Quintana, M.J.; and Katayama, S. “General-purpose declarative inductive program-
ming with domain specific background knowledge for data wrangling automation”, ht-
tps://arxiv.org/abs/1809.10054
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3.7 Mapping the Skills in Data Science with Those in Al/ML
Jose Hernandez-Orallo (Technical University of Valencia, ES) and Lidia Contreras-Ochando

License ) Creative Commons BY 3.0 Unported license
© Jose Hernandez-Orallo and Lidia Contreras-Ochando
Joint work of Jose Hernandez-Orallo, César Ferri, Flach, P., Kull, M., Lachiche, N., Fernando Martinez-Plumed,
M. José Ramirez-Quintana

Many skills, knowledge, abilities and competences have been identified as necessary for
data scientists, including both technical and non-technical skills. Some standards, such as
CRISP-DM (and extensions) recognise processes, but not competences or skills. In this talk,
under the more general context of automation in the workplace, we explored how we can
identify and map the skills in data science with the capabilities of Al and ML, in order to
know when tasks can be effectively semi-automated in data science, according to the skills
they need and the foreseeable progress in AT/ML.

We touched upon issues such as the value of semi-automation in front of whole automation,
the problems of task ‘atomising’ instead of task automating, the issues of generality and
autonomy in automation [3], the new needs for further supervision whenever automation
takes place, and the overall view of automating data science as an intrinsic part of it, which
actually makes data science evolve and require new tasks, skills and abilities.

We analysed what data science needs by first looking at the traditional data mining
process (e.g., CRISP-DM), with a view of optimisation by considering a precise data mining
goal, with then moving to more open data science trajectories [2], where data scientists
require many non-technical skills and attitudes, and especially knowledge about the domain.
We saw that more efforts for competence frameworks are needed, as what we have it is still
too preliminary to characterise what data science requires in terms of skills.

On the other hand, we covered what AI/ML is providing, to see whether it is ready
(now or in the near future) to cover partial automation in data science. We saw that apart
from many other techniques in computer science, AI/ML provide solvers and learners, using
Geflner’s terminology [4]. If we restrict to ML only, there are some recent proposal of rubrics
to see whether a task is automatable according to them, such as Brynjolfsson and Mitchell’s
rubric [1], which could be used for data science too. If we focus on the automatic handling
of domain knowledge, there has been significant progress (e.g., NELL, Watson, etc.), but
this is still poorly integrated with some other techniques.

Overall, we see that performing a well-informed mapping between what data science
requires and what AI/ML can provide in the years to come is extremely challenging, perhaps
more challenging than other areas where automation is playing an increasing role (e.g.,
transportation). This may be caused by the exploratory character of data science, which in
the end is associated with the scientific methodology (data scientists are a kind of scientists).
Nevertheless, we claimed that performing an analysis in terms of abilities or skills [5] will be
more powerful and predictive in terms of degrees and opportunities for automation than just
performing the analysis in terms of tasks.

References

1 Brynjolfsson, E. and Mitchell, T. “What can machine learning do? Workforce implications”.
Science, 358(6370):1530-1534, 2017.

2 Contreras, L., Ferri, C., Flach, P., Kull, M., Hernandez-Orallo, J. Lachiche, N., Martinez-
Plumed, F. Ramirez-Quintana, M. J., “CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories” in preparation.
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3 Fernandez-Macias, E., Gémez, E., Hernandez-Orallo, J., Loe, B.S., Martens, B., Martinez-
Plumed, F. and Tolan, S., 2018. A multidisciplinary task-based perspective for evaluat-
ing the impact of Al autonomy and generality on the future of work. arXiv preprint
arXiv:1807.02416, AEGAPQIJCAT 2018.

4 Geflner, H. “Model-free, Model-based, and  General Intelligence”, ht-
tps://arxiv.org/abs/1806.02308, 2018.

5 Hernandez-Orallo, J. “Evaluation in artificial intelligence: from task-oriented to ability-
oriented measurement”, Artificial Intelligence Review 48 (3), 397-447, 2017.

3.8 A Taxomomy of Methods for Explainable Machine Learning Models
Tobias Jacobs (NEC Laboratories Europe — Heidelberg, DE)

License ) Creative Commons BY 3.0 Unported license
© Tobias Jacobs

In a short talk at Dagstuhl I have presented a taxonomy to categorize methods that contribute
to explainable (including interpretable) machine learning models. A first fundamental
dimension of the taxonomy is the purpose for which the method is applicable. Potential
purposes range from technical and scientific benefits (e.g. model debugging, sanity checking,
generating new insights) to societal requirements (e.g. validation of fairness, granting of
of legal rights). The second dimension distinguishes between explainability as a model
requirement or constraint during model construction on the one hand, and methods that
help to explain existing complex models on the other. The latter kind of methods can be
further categorized as methods which explain black-box models in terms of generic properties
of the black box, or as methods to open the box and analyze what is happening inside. The
final dimension distinguishes between methods to explain a model as a whole (also known as
interpretability or global explainability) and methods to explain specific results of the model
(also known as local explainability, or explainability in the narrow sense).

3.9 Counterfactual Prediction with Instrumental Variables and Deep
Learning

Kevin Leyton-Brown (University of British Columbia — Vancouver, CA)

License ) Creative Commons BY 3.0 Unported license
© Kevin Leyton-Brown
Joint work of Jason Hartford, Greg Lewis, Kevin Leyton-Brown, Matt Taddy

Main reference Jason S. Hartford, Greg Lewis, Kevin Leyton-Brown, Matt Taddy: “Deep IV: A Flexible Approach
for Counterfactual Prediction”, in Proc. of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, Proceedings of Machine Learning
Research, Vol. 70, pp. 1414-1423, PMLR, 2017.

URL http://proceedings.mlr.press/v70/hartford17a.html

Counterfactual prediction requires understanding causal relationships between so-called
treatment and outcome variables. This paper provides a recipe for augmenting deep learning
methods to accurately characterize such relationships in the presence of instrument variables
(IVs) — sources of treatment randomization that are conditionally independent from the
outcomes. Our IV specification resolves into two prediction tasks that can be solved with deep
neural nets: a first-stage network for treatment prediction and a second-stage network whose
loss function involves integration over the conditional treatment distribution. This Deep
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IV framework allows us to take advantage of off-the-shelf supervised learning techniques to
estimate causal effects by adapting the loss function. Experiments show that it outperforms
existing machine learning approaches.

3.10 Subjective Interestingness in Data Mining
Jefrey Lijffijt (Ghent University, BE)

License ) Creative Commons BY 3.0 Unported license
© Jefrey Lijffijt
Joint work of Jefrey Lijffijt, Tijl De Bie
URL http://users.ugent.be/ jlijffij/presentations/DAGSTUHL2018.pdf

I present a brief introduction to the topic of subjective interestingness, particularly an
information-theoretic view that enables ranking of any type of patterns that we may want
to extract from data. After this introduction, we review two ‘instances’ of this approach,
for relational patterns (a generalisation of itemsets/tiles), as well as automatically finding
informative views of data by seeing visualisations as patterns. Finally, I conclude with
a question regarding to the topic of the workshop: are there fundamental or important
differences between the topics of explainability and interpretability of machine learning
models versus deriving insights from data.

Most of the talk covers material from the tutorial that we recently presented on this
topic: http://www.interesting-patterns.net/forsied /tutorial/
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3.11 AutoML Challenges 2015-2018: Review and Call for Action
Zhengying Liu (University of Paris Sud — Orsay, FR)

License ) Creative Commons BY 3.0 Unported license
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Joint work of Zhengying Liu, Isabelle Guyon, Hugo Jair Escalante, Michele Sebag, Wei-Wei Tu, Andre Elisseeft,

and numerous, other collaborators

Main reference Isabelle Guyon, Kristin Bennett, Gavin C. Cawley, Hugo Jair Escalante, Sergio Escalera, Tin Kam
Ho, Nuria Macia, Bisakha Ray, Mehreen Saeed, Alexander R. Statnikov, Evelyne Viegas: “Design
of the 2015 ChaLearn AutoML challenge”, in Proc. of the 2015 International Joint Conference on
Neural Networks, IJCNN 2015, Killarney, Ireland, July 12-17, 2015, pp. 1-8, IEEE, 2015.

URL https://doi.org/10.1109/IJCNN.2015.7280767

We introduce a series of data challenges in the research field of AutoML, organized by
ChaLearn and many other organizations, with the support of numerous collaborators. These
challenges are:

AutoML challenge (2015-2016), collocated with NIPS, ICML, IJCNN;

AutoML2 (2017-2018), collocated with PAKDD18;

AutoML3: AutoML for Lifelong Machine Learning (on-going), collocated with NIPS18;

AutoDL challenge (coming soon), more details to be announced.
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3.12 Bilevel Programming for Hyperparameter Optimization and
Meta-Learning

Paolo Frasconi (University of Florence, IT)

License @ Creative Commons BY 3.0 Unported license
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International Conference on Machine Learning ICML 2018, Stockholm, Sweden, July 10-15, 2018,
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We introduce a framework based on bilevel programming that unifies gradient-based hyper-
parameter optimization and meta-learning. We show that an approximate version of the
bilevel problem can be solved by taking into explicit account the optimization dynamics for
the inner objective. Depending on the specific setting, the outer variables take either the
meaning of hyperparameters in a supervised learning problem or parameters of a meta-learner.
We provide sufficient conditions under which solutions of the approximate problem converge
to those of the exact problem. We instantiate our approach for meta-learning in the case of
deep learning where representation layers are treated as hyperparameters shared across a set
of training episodes. In experiments, we confirm our theoretical findings, present encouraging
results for few-shot learning and contrast the bilevel approach against classical approaches
for learning-to-learn.
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3.13 Pyconstruct: A Library for Declarative, Constructive Machine
Learning

Andrea Passerini (University of Trento, IT)

License @@ Creative Commons BY 3.0 Unported license
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Intelligence, IJCAT 2018, July 13-19, 2018, Stockholm, Sweden., pp. 5823-5825, ijcai.org, 2018.
URL https://doi.org/10.24963/ijcai.2018 /850

Constructive learning is the task of learning to synthesize structured objects from data.
Examples range from classical sequence labeling to layout synthesis and drug design. Learning
in these scenarios involves repeatedly synthesizing candidates subject to feasibility constraints
and adapting the model based on the observed loss. Many synthesis problems of interest are
non-standard: they involve discrete and continuous variables as well as arbitrary constraints
among them. In these cases, widespread formalisms (like linear programming) can not be
applied, and the developer is left with writing her own ad-hoc solver. This can be very
time consuming and error prone. I will describe Pyconstruct [1], a Python library tailored
for solving real-world constructive problems with minimal effort. The library leverages
max-margin approaches to decouple learning from synthesis and constraint programming as
a generic framework for synthesis. Pyconstruct enables easy prototyping of working solutions,
allowing developers to write complex synthesis problems in a declarative fashion in few lines
of code. The library is available at: https://goo.gl/Ul1PaKF
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3.14 Pairwise Meta Rules, Full Model Selection, and Some Speculative
Ideas

Bernhard Pfahringer (University of Waikato, NZ)

License ) Creative Commons BY 3.0 Unported license
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In this talk T present pairwise meta rules for meta-learning, as well as a more scalable
hierarchical version of them. They show good potential, especially when used with nearest
neighbour, or random ranking forests. I also quickly cover an early attempt at an evolutionary
system that jointly optimises combinations of up to four preprocessing methods and one
learning algorithm. System Fantail combines ideas from genetic algorithms with particle
swarm optimisation. Finally I speculate about approaches beyond black box optimisation.
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3.15 Interactive / Visual Data Exploration Tutorial

Kai Puolamaki (University of Helsinki, FI) and Remco Chang (Tufts University — Medford,
US)

License ) Creative Commons BY 3.0 Unported license
© Kai Puolaméiki and Remco Chang

We give an overview of interactive and visual data exploration. First, we discuss the scope
of the talk, which include the analytic problems that benefit from both automation and
human feedback, and in which the interaction happens at time scales of c¢. 1-10 seconds. We
argue that practitioners would benefit from studying visualization techniques developed in
vis community, such as graph techniques and techniques for multivariate data. Finally, we
give an high level overview of dimensionality reduction and how to incorporate interaction
there, plus a brief tutorial of how to get started on interactive and visual data exploration
using R and Shiny library.

3.16 Tell Me Something | Don’t Already Know: Tools for
Human-guided Data Analysis

Kai Puolamdaki (University of Helsinki, FI)

License ) Creative Commons BY 3.0 Unported license
© Kai Puolamaki

The outcome of the explorative data analysis (EDA) phase is vital for successful data
analysis. EDA is more effective when the user interacts with the system used to carry out
the exploration. A good EDA system has three requirements: (i) it must be able to model
the information already known by the user and the information learned by the user, (ii) the
user must be able to formulate the objectives, and (iii) the system must be able to show the
user views that are maximally informative about desired features data that are not already
know for the user. Furthermore, the system should be fast if used in interactive system. We
present the Human Guided Data Exploration framework which satisfies these requirements
and generalises previous research. This framework allows the user to incorporate existing
knowledge into the exploration process, focus on exploring a subset of the data, and compare
different complex hypotheses concerning relations in the data. The framework utilises a
computationally efficient constrained randomisation scheme. To showcase the framework,
we developed a free open-source tool, using which the empirical evaluation on real-world
datasets was carried out. Our evaluation shows that the ability to focus on particular subsets
and being able to compare hypotheses are important additions to the interactive iterative
data mining process.

In this talk we present some tools for human-guided data analysis that utilise max-
imum entropy and/or constrained randomisation methods, such as sideR, available at
http://www.iki.fi/kaip/sider.html, and tiler available at https://github.com/aheneliu/tiler
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3.17 Explaining Learned Models — Towards Relating Verbal
Explanations to Visual Domains for Interactive Learning with
Mutual Explanations

Ute Schmid (Universitit Bamberg, DE)

License @@ Creative Commons BY 3.0 Unported license
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With the ever growing interest in machine learning in application domains such as autonomous
driving, medical diagnosis, connected industry, or education, it has been recognized that
machine learned models need to be transparent and comprehensible. For instance, a medical
expert has to understand why a machine classifies some health state as critical given a
computer tomographic image before s/he decides on the diagnosis. This is especially the
case when the expert opinion deviates from the classification. In this case, the expert
might (maybe wrongly) suspect a false alarm, mistrust the system, and consequently follow
his/her own opinion. In the context of the collaborative project ‘Transparent Medical Expert
Companion’ we are developing an approach to explanation generation for medical image data.
Explanation generation is realized by a template based transformation of Prolog rules into
natural language text. The Prolog rules has been learned with an inductive programming
approach (Aleph, Metagol). Current topics of research in our project are: Combining
black-box machine learning, especially Convolutionary Networks with ILP to address the
trade-off between predicitive accuracy and interpretability; investigating incremental learning
to allow the human experts to correct classifications which results in an adaptation of the
classification rules; relating verbal explanations with the original image data, especially for
explaining rules involving binary relations or negation.

3.18 Monte Carlo Tree Search for Algorithm Configuration: MOSAIC
Michele Sebag (CNRS, FR)

License ) Creative Commons BY 3.0 Unported license
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The sensitivity of machine learning algorithms w.r.t. their hyper-parameters and the difficulty
of finding the ML algorithm and its hyper-parameter setting best suited to the dataset at
hand has led to the rapidly developing field of automated machine learning (AutoML), at
the crossroad of meta-learning and structured optimization. Several international AutoML
challenges have been organized since 2015, motivating the development of the Bayesian
optimization-based approach Auto-Sklearn (Feurer et al. 15) and the randomized search
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approach Hyperband (Li et al. 16). In this paper, a new approach, called Monte Carlo
Tree Search for Algorithm Configuration (MOSAIC), is presented, fully exploiting the tree
structure of the algorithm portfolio-hyperparameter search space, with competitive results
on the AutoML challenge 2015.

3.19 Statistical Thinking and Data Science: Observations
Padhraic Smyth (University of California — Irvine, US)

License @ Creative Commons BY 3.0 Unported license
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In the context of the seminar topic “automating data science” it is worth visiting potentially
relevant ideas from the field of statistics, given the historical experience with the broad canvas
of data analysis in that field. There has long been an acknowledgement in statistics of the
importance of statistical thinking and statistical strategy in terms of providing a view of data
analytic activities at a more general level than the details of specific methods and techniques.
From a computer science perspective there is value in understanding how statisticians have
addressed the question of how to think about data analysis in a systematic manner. This
systematic perspective has been approached from the point of view of the practice of data
analysis (see for example position papers by Tukey, Mallows, Cox, Huber, Chatfield, and
many others), to the development of general theories and models for the process of data
analysis (e.g., see Wilde 1994; Grolemund and Wickham, 2014), to education (e.g., Breiman,
1984 (US Berkeley Tech Report); Horton and colleagues, 2014 onwards), to the development
of software systems to provide guidance to data analysts along the path of data analysis
(e.g., see Oldford and Peters, 1986; Lubinsky and Pregibon, 1988). In this talk we briefly
discussed these threads of work and their potential relevance to current endeavours in data
science. In particular, one important message from this prior work is the notion that the
human analyst is central to the process of data analysis and, as a consequence, tools that
support the human analyst (i.e., semi-automation) are more likely to be successful than tools
that seek to fully automate data analysis without a human in the loop.

3.20 Explainable Interactive Learning
Stefano Teso (KU Leuven, BE)

License @ Creative Commons BY 3.0 Unported license
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Although interactive learning puts the user into the loop, the learner remains mostly a black
box for the user. Understanding the reasons behind queries and predictions is important when
assessing how the learner works and, in turn, justifiably establishing or revoking trust. This
talk covers some recent work on integrating active learning with explainable machine learning,
where the queries to the user are augmented with predictions and explanations thereof, and
the user provides both labels and explanation corrections for improved directability and
control.
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3.21 Automatic Configuration of Stream Clustering Algorithms?
Heike Trautmann (Universitit Minster, DE)

License ) Creative Commons BY 3.0 Unported license
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Analysing data streams has received considerable attention over the past decades due to the
widespread usage of sensors, social media and other streaming data sources. A core research
area in this field is stream clustering which aims to recognize patterns in an unordered,
infinite and evolving stream of observations. Clustering can be a crucial support in decision
making, since it aims for an optimized aggregated representation of a continuous data stream
over time and allows to identify patterns in large and high-dimensional data. A multitude of
algorithms and approaches has been developed that are able to find and maintain clusters
over time in the challenging streaming scenario.

However, benchmarking stream clustering algorithms is a nontrivial task although first
studies already exist. Besides the well-known problem of choosing an appropriate performance
measure in unsupervised learning, the most crucial challenge when applying stream clustering
algorithms is the correct choice of parameter settings. Stream clustering algorithms usually
have a multitude of interdependent parameters, both for the micro-clustering step as well
as for the macro-clustering phase and are highly sensitive to these settings. Automated
algorithm configuration techniques would require an appropriate learning phase on the one
hand and in our scenario moreover would have to be able to deal with drifts or structural
changes of the stream. The talk aims at initiating a fruitful discussion on the topic paving
the way to automated algorithm configuration and selection approaches.
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3.22 Automatic Bayesian Density Analysis
Isabel Valera (MPI fiir Intelligente Systeme — Tibingen, DE)

License () Creative Commons BY 3.0 Unported license
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Making sense of a dataset in an automatic and unsupervised fashion is a challenging problem
in statistics and AI. Classical approaches for density estimation are usually not flexible
enough to deal with the uncertainty inherent to real-world data: they are often restricted to
fixed latent interaction models and homogeneous likelihoods; they are sensitive to missing,
corrupt and anomalous data; moreover, their expressiveness generally comes at the price of
intractable inference. As a result, supervision from statisticians is usually needed to find the
right model for the data. However, as domain experts do not necessarily have to be experts
in statistics, we propose Automatic Bayesian Density Analysis (ABDA) to make density
estimation accessible at large. ABDA automates the selection of adequate likelihood models
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from arbitrarily rich dictionaries while modeling their interactions via a deep latent structure
adaptively learned from data as a sum-product network. ABDA casts uncertainty estimation
at these local and global levels into a joint Bayesian inference problem, providing robust and
yet tractable inference. Extensive empirical evidence shows that ABDA is a suitable tool
for automatic exploratory analysis of heterogeneous tabular data, allowing for missing value
estimation, statistical data type and likelihood discovery, anomaly detection and dependency
structure mining, on top of providing accurate density estimation.

3.23 Making Smart Data Analytics available for SMEs
Andreas Wierse (SICOS BW GmbH — Stuttgart, DE)

License ) Creative Commons BY 3.0 Unported license
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Oune of the main tasks of SICOS BW is to support small and medium sized enterprises (SMEs)
in the uptake of data analytics technology (smart data with emphasis on the generation of
value for the company). Since SMEs usually do not have a lot of expertise in data analytics
(mostly none at all), we developed so called “potential analysis”-projects, where researchers
of KIT (Karlsruhe Institute of Technology) work with the company’s data for a few weeks in
order to find interesting patterns but also to let them experience the process that is necessary
to perform successful data analytics. If we find interesting patterns in the end the company
is often interested to apply analytics in their every day business.

On one side this creates a need for training in order to provide the employees with
the necessary knowledge; this is usually a fairly difficult and time consuming process. On
the other side it would be very helpful for the SMEs, if the technology they want to use
were highly automated. This could ease the burden for the SMEs significantly, since more
employees would be able to use the technology and the need for training could be released.
In general high usability is crucial for data analytics methods and tools to be successful in
the SME context.

The companies that SICOS BW supports come from different sectors, including machinery,
production, plant engineering and construction, manufacturing as well as trade an information
technology. Application cases are for example predictive maintenance, sales forecast, early
identification of production anomalies (chemical industry), energy consumption estimates or
text classification.
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3.24 Tutorial on Data Preparation and Cleaning
Christopher Williams (University of Edinburgh, GB)
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A common view is that up to 80% of work on a data mining project is involved in data
understanding, cleaning and preparation, yet machine learning has not focused very much
on these topics. I will describe the issues around data parsing, obtaining (or inferring) a
data dictionary, data integration, entity resolution, addressing format variability, structural
variability, identifying and repairing missing data, and anomaly detection and repair.

4  Working groups

The following sections contain summaries of breakout discussion session that were organized
during the seminar. The authors for each section led the discussion of one of these breakout
sessions. They made an attempt to summarize these discussions in an accurate, comprehensive,
and intelligible manner, fairly reflecting all points of view. Although it is not practical to
attribute all input to individual participants, note that these summaries are thus the result
of input by several, often many of the workshop participants. As such, the summaries also
do not always reflect either the author’s or the full breakout session group’s opinion.

The workshop and the discussion organizers sincerely appreciate the input from all the
participants in the breakout sessions and would like to thank everyone for their contributions.

4.1 Breakout session on “Beyond the Black Box — Explainability of
Machine Learning Models”

Ray G. Butler (Butler Scientifics — Barcelona, ES)

License ) Creative Commons BY 3.0 Unported license
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The breakout session “Beyond the Black Box — Explainability of Machine Learning Models
discussed issues related to being able to explain and interpret the models that machine
learning produces. We made a distinction between explainability — the ability of a model
to justify decisions/predictions in individual cases — and interpretability — understanding
a model as a whole and in general, perhaps through a series of decisions/predictions (a
“conversation” with the model). In particular, explainability is relatively easy to achieve and
already present for most models (for example each prediction can be traced through a series
of neurons that represent certain features in a deep neural network), while interpretability is
poorly understood even for simple models. An interpretable model would allow to judge any
and all biases that were present in the training data and the model to assess whether the
model will work as expected in every case.

An explanation or interpretation of a model is subjective in that one human may be
satisfied with/convinced by a particular explanation that another human finds unsatisfactory.
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There is literature in the social sciences on what explanations are and how humans perceive
them that should be helpful in this context. A caveat to watch out for when providing
explanations is that humans are very good at matching patterns and convincing themselves
that something makes sense, and an incorrect or misleading explanation that is not supported
by the data may sound convincing.

Finally, we discussed the issue of performance in this context. While in many cases only
complex and hard-to-interpret models deliver good performance, the use of AutoML methods
can help in that it allows to train even relatively simple models with good performance.
Explainability can also help to increase performance, as it allows human experts to inspect
the model, identify areas where performance is bad and the reasons for that, and remedy
those issues.

4.2 Breakout Session on “Automation of data exploration tasks”
Tijl De Bie (Ghent University, BE)
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Many important data science tasks are ill-specified: there is some amount of data (increasingly
an abundance of it, and often heterogeneous and with complex structure), and the data
analyst wishes to gain new insights or make discoveries driven by this data. The main related
challenges stem from the fact that such tasks are purposefully ill-defined and open-ended —
i.e. there is no clear objective function like in more traditional machine learning tasks where
the goal is typically to build a predictive model for a specific target variable.

The key challenge in automating data exploration is thus how to specify and pursue an
inherently ill-defined objective, and how to measure progress towards such an objective.

It was mentioned that data exploration is often an intermediate step in a data science
pipeline, the end goal of which is well-defined but too complex to tackle without a good
understanding of the data. An example was given of investment companies gathering large
amounts of data, which is first analyzed in an exploratory manner by data profilers, before it
is used for predicting stock price fluctuations — the ultimate goal which is predictive. A more
elementary example is the well-known use of of feature selection or dimensionality reduction
as a regularization strategy for a subsequent machine learning model.

However, several participants raised examples where data exploration is arguably the
end-point. A first example given is data-driven research such as (increasingly) biological
research. The end goal of biological research is arguably to understand how life works. This is
a scientific discovery problem for which researchers increasingly rely on high-throughput data
—i.e. it is increasingly addressed using data science techniques. Of course, it is inevitable to
break this task down into smaller subproblems (e.g. “does this particular subsequence in the
DNA code for a gene or not?”), but these are merely steps towards the larger goal of using
data in order to gain an understanding of life. Other examples that were raised pertain to
astronomy research (e.g. the Sloan Digital Sky Survey initiative), as well as to industry (e.g.
the placement of a multitude of sensors throughout an industrial plant, which may be used
to find anomalies in the process and understand the process better).

Thus, a distinction can be made between tasks where a clear objective exists although
it is too complex in practice to pursue without an initial exploratory analysis of the data,
and tasks where such an objective function does not exist at all and the goal is simply
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exploring the data in order to make data-driven discoveries or gain new insights. These
different settings may have different needs in practice, and thus have been studied in different
communities (e.g. the databases, the statistics and exploratory data analysis, and the KDD
communities) using different kinds of techniques. Arguably, the roots are to be found in
statistics, and in the seminal work of John Tukey on Exploratory Data Analysis (EDA),
who suggested EDA as a way of hypothesis generation, to be subsequently subjected to
confirmatory analyses.

A point of discussion was whether the automation of data exploration can be approached
in a similar manner as AutoML techniques for supervised learning. To an extent this seems
to be the case:

Where the exploratory analysis is merely an intermediate step, automating this step can
at least in principle be driven by the quantifiable objective of the entire data science
process (which could be a predictive modeling task). Yet, in practice this is typically
infeasible.
There are also similar issues of model and/or algorithm selection to be done in prototypical
data exploration tasks such as outlier detection, clustering, community detection in
networks, dimensionality reduction, and density estimation. In those tasks, some notion
of model fit (e.g. the likelihood of a model, a clustering cost function, etc.) is an obvious
criterion. However, such a notion may not always align with the needs of the human
data analyst (e.g. it may explain irrelevant aspects of the data very well, at the expense
of the more relevant aspects in the data). Thus, user interaction seems fundamentally
inevitable to this process, whereas in AutoML user interaction is arguably needed only
due to imperfections in AutoML that at least in principle could be remedied with more
research progress.

Some other orthogonal issues were raised in the discussion, and briefly summarized here.

The first remaining issue is the need for methods that can extract insights from and make
discoveries in structured data. Many techniques still expect the data to be formatted in a
basic data table, often causing significant loss of information.

The second remaining issue is the need to take into account background knowledge, in two
ways. The first way is in ensuring that the findings in the data add new value to that prior
background knowledge, i.e. they should not be implied by it as the analyst would not gain
new insights. An approach like this would ensure the findings are subjectively interesting to
the data analyst. The second way is almost the opposite: ensuring that the findings in part

corroborate the prior knowledge of the data analyst, in order to create trust in the analysis.

Hence, there is a trade-off between trust and information to be made.

The third remaining issue concerns visualization, often a crucial part of data exploration.
Quantifying the quality of a visualization is an open challenge. A particular aspect not often
studied is the veracity of visualizations, or lack thereof: the risk that a visualization can make
the data analyst see patterns that are not there (e.g. t-SNE is known to exhibit spurious
cluster structure if the parameters are not tuned right). To conclude, the exploration of data
was acknowledged as an important data science component, sometimes as a stepping stone
towards a clearly defined goal, and sometimes as an ill-specified but important goal on itself.
Such tasks are challenging in practice, and considerable amounts of research are needed to
automate it further — but inevitably with the user tightly in the loop.
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4.3 Breakout Session on “Data Wrangling”
Jose Hernandez-Orallo (Technical University of Valencia, ES)
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We had a breakout session on “Data Wrangling” on Tuesday afternoon. We understood
the term as covering all elements in data preparation, such as data integration, cleansing
and transformation, e.g., following Chris William’s taxonomy, presented in his tutorial.
We wanted to make this clear as some definitions of data wrangling are too narrow (e.g.,
https://en.wikipedia.org/wiki/Data_ wrangling).
During the discussion we covered some of the data wrangling topics that were considered
most relevant during the previous days. In particular we covered:
How to instruct the system on what we want to do with data? (‘domain specific
wrangling’): Given a dataset and a task (for which we are given, in the best cases, a
performance metric) can we clean (apply operators to) the dataset to maximise the
performance metric? We understand cleaning here as going beyond feature extraction.
Or, given a dataset and a target algorithm, can we put the data in the right format for
the particular target algorithm? An issue is whether transformation are reversible or
traceable (need to be able to come back to the original representation). One question that
was raised is whether data wrangling can be done just to increase “data quality” without
having a particular task in mind. For instance, domain inference can be done and is useful
even if we do not know the task yet. When talking about “domain specific wrangling”,
we saw the important distinction between the format (more task-independent) and the
semantic part (more task-dependent).
Automatic data integration: this item, which is related to the previous one, considers
the integration of different sources of data, in different formats. Can we have a sequence
of data wrangling operations that lead to a desirable format? Again, we are here very
interested in ensuring provenance (an issue not only but mostly for integration).
How can we make tools more general where users can add their knowledge instead of
being preprogrammed? We mentioned some possibilities, such as the use of inductive
logic programming, for which this is natural. As an example, Pyconstruct is a library
for declarative, constructive machine learning (Andrea Passerini) where background
knowledge is expressed as constraints. One question that arose is whether we need
domain-specific ontologies or domain adaptation (use knowledge/models from different
but related domains). Finally, the interfaces for interaction are most relevant here, and
learning can be transformed into teaching: using “teaching by example” followed by
program synthesis (e.g., FlashFill).
Quantifiable measurable progress and metrics for data wrangling. We all agreed that we
need benchmarks, for exploratory settings (with no predetermined task) and for settings
where there is precise goal. We need metrics that estimate how close the data wrangling
process gets us to some format that could be used in a data analysis tool (weka, sk-learn,
Knime, ...). For the evaluation in supervised settings, it is important not to apply the
semantic transformations to the test data (e.g., the test data should not use instance
selection motivated by missing values).
Non-tabular data (text, sensor, video, etc.). Most of the data wrangling literature thinks
in terms of converting data into one single integrated minable view, in a tabular way, with
columns (features) and rows (examples). But many problems do not fit this setting. Some
may use embeddings to convert between representations, especially in NLP, but in other
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cases the representations are created (possibly automatically by learning representations
techniques), and both the format and the domain may change with time and must require
adaptation.

Feedback from the users: finally, and related to many of the items above, it is very
important for semi-automated approaches or for improving and validating the fully-
automated ones to have feedback from the users. For instance, Flashfill is an example of
simple feedback, but there are other ways of feedback (reinforcement learning, preferences,
such as collaborative filtering, etc.). Another point that was made is that intervening
early in the process might be easier and more effective.

As possible actions from this workshop we suggested the collection of related papers, the
analysis of what ETL / DS tools provide nowadays, having a look at sites such as “frictionless
data” https://frictionlessdata.io/ including csv files and code for wrangling, the derivation
of new metrics and collection of datasets. As a more long-term action we talked about a
possible challenge/competition.

4.4 Breakout session on “Data-driven + / vs knowledge-based
techniques (learning + / vs automated reasoning)”

Andrea Passerini (University of Trento, IT)
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The discussion started by pointing out that automated reasoning is being largely overlooked
nowadays because of the hype on machine learning and especially deep learning. However,
there is a strong potential in the combination of machine learning techniques and automated
reasoning / knowledge-based approaches, which is definitely worth exploring.

Three main ways of combining these fields were identified:

using machine learning to improve reasoning systems

using reasoning techniques to improve machine learning systems, e.g. by adding a

reasoning layer on top of machine learning models

learning to reason

One non-trivial aspect which had to be addressed was what is meant by knowledge.
Generally speaking, any model made out of data could be considered knowledge. The
consensus was that we talk about knowledge meaning explicit knowledge, see also the
distinction between explicit and implicit knowledge in psychology.

A second relevant aspect was that the distinction between learning and reasoning does not
imply a distinction between data-driven and knowledge-driven approaches, as learning itself
can be both data-driven and knowledge-driven, and the same holds for reasoning. The dis-
tinction between data-driven and knowledge-driven approaches should thus be complemented
with the distinction between induction and deduction.

In terms of usefulness of the combination, these are the main opportunities we identified:

More accurate models

More efficient models (one-shot learning)

Reliable models

Interpretable models

Augmenting humans (fix reasoning biases, improve reasoning capabilities)
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When talking about more developing accurate models, the field of statistical relational
learning is an obvious candidate. However, many questions remain unanswered:

Do we need statistical relational learning, when plenty of data is available?

The computational cost of these systems is substantially higher that the one of deep

learning systems (also thanks to advances in hardware), can this gap be filled in some

way?

When talking about interpretable models and augmenting humans, the need for under-
standing the principles and limitations of human reasoning clearly emerged as a necessary
and poorly explored aspect (see e.g. Thinking, fast and slow by Daniel Kahneman). From
this perspective, the fact that existing approaches have mostly focused on propositional and
first order logic seems suboptimal or at least incomplete. Other modalities should be better
explored, like:

argumentation

confirmation theory

causality

counterfactual reasoning

conversational reasoning

When talking about reliability of learning systems, while explainability clearly helps in
building trust, it is not always required:

Technologies get accepted and used, even if we do not fully understand them.

Unsat proofs from SAT solvers can be huge (but they can be verified by simple proof

checkers)

We trust black boxes all the times, they are called humans!

There are two different kinds of trust — the one that leads us to trust in people and the

one that lets us to trust engineered systems (planes, etc.)

4.5 Breakout Session on “Human-in-the-Loop Automatic Data
Science, and How to Avoid Ignorant Use”

Joaquin Vanschoren (TU Eindhoven, NL) and Holger H. Hoos (Leiden University, NL)
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An important question arising in the context of automating data science concerns the degree of
automation that is feasible or desirable. This breakout session started from a broad agreement
that complete automation is currently infeasible as well as conceptually problematic. Two
groups explored and discussed the concept of human-in-the-loop AutoDS, i.e., automated
data science that supports human users with a certain level of expertise rather than aiming
to replace them, and how to avoid ignorant use of human-in-the-loop AutoDS systems.

4.5.1 Human-in-the-loop AutoDS

Often, a user does not know precisely what she wants. To effectively aid such users, it
seems inevitable to include user modelling in the system: the AutoDS system should learn to
understand the intentions and limitations of specific users. This leads to ‘personalized data
science’: AutoDS systems should figure out what matters to their users, and how to best
support them in achieving their objectives. Realising such capabilities also requires expertise
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in human-computer interaction. The objectives and goals of human users of an AutoDS
system (or any data science tool) will be substantially affected by their level of knowledge.
AutoDS systems should assess this, for example, by running experiments designed to assess
a user’s expertise and tendency to blindly trust the system. Especially for inexperienced
users, advice such as ‘people who used this model/technique also found that model/technique
useful” may be helpful.

The existing research area of preference learning is highly relevant in this context. One
useful approach would be for the AutoDS system to start processing given data and ask the
user for input at carefully chosen points in time. Interesting research questions arising in this
context include the following: Where in a data science pipeline can the user meaningfully /
effectively add knowledge, and where is it most needed? Which kind of user feedback should
be elicited if there is a limit on the number of interactions or the amount of overall time
allotted to them? Specific questions to elicit user preferences are “Can you understand this
model?”, or “I have removed these outliers, was that OK?” There is a limit on the amount of
feedback a user is willing to give, so the AutoDS system should be conscientious in requesting
it. Considering that humans often work very effectively with visualisations, these should
likely play a key role in such interactions.

Another mode of interaction that may be interesting to consider is that found in so-called
centaur teams in chess playing, where a human player suggests a move to chess program
(before actually making the move), and the program analyses and demonstrates what will
likely happen. This type of interaction has been shown to lead to powerful interactions and
strength of play beyond that of the best chess programs.

Overall, it seems that finding compelling answers to the questions arising in the context
of human-in-the-loop systems requires a significant shift in research focus for many AutoDS
researchers; for example, there is currently little interest in user studies. An open question is
how to incentivise researchers to work on these questions.

4.5.2 How to avoid ignorant use of AutoML/AutoDS?

Ignorant use (in the sense of use without necessary understanding of key characteristics and
limitations) of machine learning and data science methods can lead to poor performance,
misleading results and ultimately, incorrect or harmful decisions. Considering the degree
to which machine learning and data science techniques are starting to be used within
organisations without access to the prerequisite expertise, serious problems are bound to
arise, especially as increasing automation promises to make data science techniques more
accessible to non-experts. A crucial question therefore is how to prevent or alleviate the
problems arising from ignorant use as much as possible.

First, we need better education and training. Many online courses now promise to make
anyone taking them into a data scientist with minimal effort and time investment. Worse,
there is a misperception that AutoDS will soon completely eliminate the need for data
scientists. It is important for experts in AutoDS to actively warn against this view. One
idea is to generate counterexamples where AutoDS does not work yet, and share war stories
to make people more aware of current pitfalls. It may also be useful to start a blog on how
not to automate data science.

Second, we need to provide guardrails against ignorant use of AutoDS. For instance,
users could be prevented from or warned against performing multiple comparisons without
proper statistical correction. Yet, distributed reuse is difficult to control. Other preventive
measures could include that learned models should refuse to make predictions if the inputs
are too different from the training data. However, if the model is poor, this may be difficult
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to recognise. Overall, the idea of guardrails against ignorant use raises interesting research
questions: What are conditions that should be met in order to safely use a method? Can we
learn those? How can we best support users in meeting these conditions?

Generally, the automation of data science is likely subject to a generalised form of Wiener’s
laws of aviation and human error, specifically: Digital devices tune out small errors while
creating opportunities for large errors.

With this in mind, and related to the second point above, it seems useful to distinguish
two types of automation. The first is to eliminate drudgery, as in a washing machine that (for
most purposes) eliminates the need for manual washing. The second is to provide high-level
oversight to help detect, avoid or compensate for human error, as in an fly-by-wire system
that would not accept control inputs from a pilot that would stall the aircraft. It appears
that good progress is being made in the area of drudgery automation, i.e., in automating
tasks that data scientists have to do routinely, such as hyperparameter optimisation. Less
attention has been paid so far to the second type of automation, which may hold the key to
avoiding many of the pitfalls of ignorant use of AutoDS systems.

Overall, it seems useful to bracket human expertise by the two types of automation,
which we may call a “human in the centre” approach. To avoid complacency, it may also be
useful to occasionally let humans perform tasks that can be automated (this has, in fact, be
proposed in aviation to counteract the detrimental effects of autopilot use on human pilots’
skills). Finally, it may be interesting to investigate to which degree an AutoDS system could
recognise when it can automate tasks for a specific user, and how to do so safely, without
eliminating or reducing important elements of human judgement.

It seems clear that, taking a the “human in the centre” approach, increasing automation
from both sides will gradually reduce the role of the human user or operator. Whether this
will ultimately make it possible to completely eliminate the need for a human expert is an
open question; even if it were possible, it is unclear whether this would a desirable goal to
achieve. As long as human experts play an important role in the data science process, it
seems crucial to ensure that they have an appropriate level of knowledge and preparation
that allows them to safely use the system — perhaps in the form of a meaningfully defined
‘data science license’.
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